Wybierz produkty dostępne w sklepie internetowym
Twój koszyk (0)
Lp.
Nazwa towaru
ilość
Cena jedn. (netto)

Wartość zamówienia netto: 0.00 zł

Wartość zamówienia brutto: 0.00 zł

Czujnik termoelektryczny płaszczowy

Typ: TTP-BT

Konfiguruj do Zapytania (Konfigurator)
Określ poszczególne parametry produktu na potrzeby Zapytania ofertowego
Parametry produktu:
Typ termopary
Krotność termopary
Materiał płaszcza
Średnica płaszcza d [mm]
Klasa dokładności
Rodzaj spoiny pomiarowej
Długość płaszcza L [mm]
Dodaj do Zapytania ofertowego

Zastosowanie

 

  • Zakres pomiarowy: -40 .. +1250°C
  • Ogólna budowa maszyn i urządzeń
  • Pomiar temperatury cieczy, gazów i ciał stałych
  • Wszystkie gałęzie przemysłu
  • Laboratoria pomiarowe

 

Właściwości techniczne

 

  • Czujnik TTP-BT zakończony odizolowanymi drutami
  • Wykonany z przewodu płaszczowego izolowanego wewnątrz tlenkiem magnezu MgO
  • Osłona wykonana ze stali kwasoodpornej lub żaroodpornej
  • Małe wymiary, średnica zewnętrzna od Ø1.0 mm
  • Krótki czas reakcji na zmianę temperatury
  • Możliwość wyginania czujnika
  • Odporny na wibracje

 

Krotność czujnika

 

TC Średnica płaszcza d [mm]
Ø1.0 Ø1.5 Ø2.0 Ø3.0 Ø4.5 Ø6.0 Ø8.0
1 x TC
(pojedynczy)

2 x TC
(podwójny)

3 x TC
(Potrójny)

 

Opis

 

Płaszczowe czujniki termoelektryczne, inaczej termopary płaszczowe, wykonane są z przewodu płaszczowego, w którym wewnętrzne druty termoparowe odizolowane są względem siebie i od zewnętrznej osłony proszkiem tlenku magnezu (MgO). Nadaje to czujnikowi wysoką wytrzymałość na wibracje i giętkość, jak też wytrzymałość na temperaturę i dobrą izolację elektryczną.

 

Czujniki te przeznaczone są do bezpośredniego pomiaru temperatury w miejscach trudnodostępnych oraz wszędzie tam, gdzie istnieje potrzeba zastosowania czujników giętkich o małych średnicach, dużej odporności na drgania i wstrząsy oraz o krótkim czasie reakcji na zmianę temperatury.

Dzięki bardzo silnemu sprasowaniu warstwy izolacji (MgO) i odpowiedniej strukturze drutów wewnętrznych, jak i płaszcza czujniki te mogą być wyginane z minimalnym promieniem krzywizny trzy razy większym od średnicy zewnętrznej płaszcza.

 

pdf Broszura informacyjna o materiale Pyrosil® D 158.88 Kb

 

Termoaparatura zaleca stosowanie płaszczy z materiału Pyrosil® D do zastosowań w wysokich temperaturach.

 

Wykonanie ATEX, IECEx, EAC Ex Certyfikaty ATEX, IECEx, EAC Ex

 

Do zastosowań w obszarach zagrożonych wybuchem dostępny jest model iskrobezpieczny Exi. Wykonanie te posiada certyfikat zgodnie z Dyrektywą 2014/34/UE (ATEX), Schematem IECEx oraz EAC Ex TR-CU 012/2011 (Euroazjatycka Unia Celna).
  • Opis
  • Zastosowanie

     

    • Zakres pomiarowy: -40 .. +1250°C
    • Ogólna budowa maszyn i urządzeń
    • Pomiar temperatury cieczy, gazów i ciał stałych
    • Wszystkie gałęzie przemysłu
    • Laboratoria pomiarowe

     

    Właściwości techniczne

     

    • Czujnik TTP-BT zakończony odizolowanymi drutami
    • Wykonany z przewodu płaszczowego izolowanego wewnątrz tlenkiem magnezu MgO
    • Osłona wykonana ze stali kwasoodpornej lub żaroodpornej
    • Małe wymiary, średnica zewnętrzna od Ø1.0 mm
    • Krótki czas reakcji na zmianę temperatury
    • Możliwość wyginania czujnika
    • Odporny na wibracje

     

    Krotność czujnika

     

    TC Średnica płaszcza d [mm]
    Ø1.0 Ø1.5 Ø2.0 Ø3.0 Ø4.5 Ø6.0 Ø8.0
    1 x TC
    (pojedynczy)

    2 x TC
    (podwójny)

    3 x TC
    (Potrójny)

     

    Opis

     

    Płaszczowe czujniki termoelektryczne, inaczej termopary płaszczowe, wykonane są z przewodu płaszczowego, w którym wewnętrzne druty termoparowe odizolowane są względem siebie i od zewnętrznej osłony proszkiem tlenku magnezu (MgO). Nadaje to czujnikowi wysoką wytrzymałość na wibracje i giętkość, jak też wytrzymałość na temperaturę i dobrą izolację elektryczną.

     

    Czujniki te przeznaczone są do bezpośredniego pomiaru temperatury w miejscach trudnodostępnych oraz wszędzie tam, gdzie istnieje potrzeba zastosowania czujników giętkich o małych średnicach, dużej odporności na drgania i wstrząsy oraz o krótkim czasie reakcji na zmianę temperatury.

    Dzięki bardzo silnemu sprasowaniu warstwy izolacji (MgO) i odpowiedniej strukturze drutów wewnętrznych, jak i płaszcza czujniki te mogą być wyginane z minimalnym promieniem krzywizny trzy razy większym od średnicy zewnętrznej płaszcza.

     

    pdf Broszura informacyjna o materiale Pyrosil® D 158.88 Kb

     

    Termoaparatura zaleca stosowanie płaszczy z materiału Pyrosil® D do zastosowań w wysokich temperaturach.

     

    Wykonanie ATEX, IECEx, EAC Ex Certyfikaty ATEX, IECEx, EAC Ex

     

    Do zastosowań w obszarach zagrożonych wybuchem dostępny jest model iskrobezpieczny Exi. Wykonanie te posiada certyfikat zgodnie z Dyrektywą 2014/34/UE (ATEX), Schematem IECEx oraz EAC Ex TR-CU 012/2011 (Euroazjatycka Unia Celna).
  • Dokumenty
Kalkulator
Przelicznik jednostek miar

Kalkulator
Charakterystyki termometrycznej

Czujniki rezystancyjne

Czujniki termoelektryczne

Temperatura zimnych końców (CJC) = °C

Przelicz wartość rezystancji na temperaturę
(wartość zgodnie z normą ITS90)

R = Ω  T = 0 °C

Przelicz wartość temperatury na rezystancję
(wartość zgodnie z normą ITS90)

T = °C R = 0 Ω

Wartości graniczne dla przelicznika

-200 °C - 850 °C

18,52 Ω - 390,48 Ω

Temperatura zimnych końców (CJC) = °C

Przelicz wartość rezystancji na temperaturę
(wartość zgodnie z normą ITS90)

R = Ω  T = 0 °C

Przelicz wartość temperatury na rezystancję
(wartość zgodnie z normą ITS90)

T = °C R = 0 Ω

Wartości graniczne dla przelicznika

-60 °C - 250 °C

69,52 Ω - 289,16 Ω

Temperatura zimnych końców (CJC) = °C

Przelicz wartość siły elektromotorycznej (s.e.m.) na temperaturę

E = mV T = 0 °C

Przelicz wartość temperatury na siłę elektromotoryczną (s.e.m.)

T = °C  E = 0 mV

Wartości graniczne dla przelicznika

-210 °C - 1200 °C

-8,095 mV - 69,553 mV

Temperatura zimnych końców (CJC) = °C

Przelicz wartość siły elektromotorycznej (s.e.m.) na temperaturę

E = mV T = 0 °C

Przelicz wartość temperatury na siłę elektromotoryczną (s.e.m.)

T = °C  E = 0 mV

Wartości graniczne dla przelicznika

-270 °C - 1372 °C

-6,458 mV - 54,886 mV

Temperatura zimnych końców (CJC) = °C

Przelicz wartość siły elektromotorycznej (s.e.m.) na temperaturę

E = mV T = 0 °C

Przelicz wartość temperatury na siłę elektromotoryczną (s.e.m.)

T = °C  E = 0 mV

Wartości graniczne dla przelicznika

-270 °C - 1300 °C

-4,345 mV - 47,513 mV

Temperatura zimnych końców (CJC) = °C

Przelicz wartość siły elektromotorycznej (s.e.m.) na temperaturę

E = mV T = 0 °C

Przelicz wartość temperatury na siłę elektromotoryczną (s.e.m.)

T = °C  E = 0 mV

Wartości graniczne dla przelicznika

-270 °C - 1000 °C

-9,835 mV - 76,373 mV

Temperatura zimnych końców (CJC) = °C

Przelicz wartość siły elektromotorycznej (s.e.m.) na temperaturę

E = mV T = 0 °C

Przelicz wartość temperatury na siłę elektromotoryczną (s.e.m.)

T = °C  E = 0 mV

Wartości graniczne dla przelicznika

-270 °C - 400 °C

-6,258 mV - 20,872 mV

Temperatura zimnych końców (CJC) = °C

Przelicz wartość siły elektromotorycznej (s.e.m.) na temperaturę

E = mV T = 0 °C

Przelicz wartość temperatury na siłę elektromotoryczną (s.e.m.)

T = °C  E = 0 mV

Wartości graniczne dla przelicznika

-50 °C - 1768.1 °C

-0,226 mV - 21,103 mV

Temperatura zimnych końców (CJC) = °C

Przelicz wartość siły elektromotorycznej (s.e.m.) na temperaturę

E = mV T = 0 °C

Przelicz wartość temperatury na siłę elektromotoryczną (s.e.m.)

T = °C  E = 0 mV

Wartości graniczne dla przelicznika

-50 °C - 1768.1 °C

-0,236 mV - 18,694 mV

Temperatura zimnych końców (CJC) = °C

Przelicz wartość siły elektromotorycznej (s.e.m.) na temperaturę

E = mV T = 0 °C

Przelicz wartość temperatury na siłę elektromotoryczną (s.e.m.)

T = °C  E = 0 mV

Wartości graniczne dla przelicznika

0°C - 1820 °C

-0,003 mV - 13,820 mV

Pomoc. Instrukcja użytkownika.

Przelicznik
jednostek miar
Kalkulator
Charakterystyki termometrycznej